cooled rapidly to room temperature and treated with 10 ml of isopropyl alcohol. The precipitated dye was removed by filtration and crystallized to give 0.15 g of product.

Carbocyanine VIIb. This compound was similarly obtained from salts IVb and VIb.

LITERATURE CITED

- 1. Yu. P. Kovtun, N. N. Romanov, and A. D. Kachkovskii, Khim. Geterotsikl. Soedin., No. 7, 985 (1988).
- 2. K. Venkataraman, The Chemistry of Synthetic Dyes [Russian translation], Khimiya, Leningrad (1975), p. 207.
- 3. G. G. Dyadyusha, A. I. Tolmachev, N. N. Romanov, E. K. Mikitenko, and A. D. Kachkovskii (Kachkovski), Dyes Pigm., No. 4, 179 (1983).
- 4. D. Jones and J. Jones, J. Chem. Soc., C, No. 5, 707 (1969).
- J. Shah and B. Tilak, Indian J. Chem., <u>188</u>, 486 (1979).
 N. Sherber, D. Papa, K. Schwen, and M. Sherlock, J. Org. Chem., <u>36</u>, 2002 (1971).
- 7. V. V. Lapachev, S. A. Stekhova, I. Ya. Mainagashev, M. L. Fedotov, V. E. Hall, and V. P. Mamaev, Khim. Geterotsikl. Soedin., No. 6, 802 (1986).
- 8. E. K. Mikitenko and N. N. Romanov, Khim. Geterotsikl. Soedin., No. 1, 42 (1983).
- 9. M. Yu. Kornilov, L. M. Shulezhko, and A. I. Tolmachev, Teor Eksp. Khim., 10, 508 (1974).
- 10. E. K. Mikitenko and N. N. Romanov, Ukr. Khim. Zh., <u>48</u>, 1071 (1982).
- 11. G. G. Dyadyusha and A. D. Kachkovskii, Ukr. Khim. Zh., 44, 948 (1978).
- 12. A. D. Kachkovskii (Kachkovsky), M. Kudinova, B. Shapiro, N. Derevyanko (Derevjanko), L. Kurkina, and A. I. Tolmachev, Dyes Pigm., No. 5, 295 (1984).
- 13. A. I. Kiprianov, Collection of Scientific Research [in Russian], Naukova Dumka, Kiev (1979), p. 23.
- 14. K. James, The Theory of the Photographic Process [Russian translation], Khimiya, Leningrad (1980), p. 198.
- 15. E. D. Sych, Ukr. Khim. Zh., 24, 79 (1958).

SYNTHESIS AND ABSORPTION SPECTRA OF POLYMETHINE DYES - DERIVATIVES

OF SUBSTITUTED THIENO- AND INDOLOTHIAZOLES

V. G. Dzyubenko, L. D. Pinkin, UDC 547.759.3'789.3'735:668.8:543.422.6 and P. I. Abramenko

Cyanine, merocyanine, and styryl dyes that are derivatives of halo-, alkyl-, alkylene-, and arylthieno[2,3-d]thiazoles and halo- and alkylindolo[3,2-d]thiazoles were synthesized. It is shown that both electron-donor and electron-acceptor substituents in the 5 and 5' positions of the heteroresidues of thienothiazolocarbocyanines lead to a more uniform distribution of the electron density in their chromophore than in the unsubstituted dye and to a bathochromic shift of the absorption maximum. Methyl groups in the heteroresidues of indolothiazolocarbocyanines give rise to a small bathochromic effect.

Polymethine dyes that are derivatives of thieno- and indolothiazoles absorb in a longer-wave region than the corresponding thia- and naphthothiazolocyanines [1-4]. It is also known that some cyanines that are derivatives of benzo- and naphthothiazoles are effective spectral sensitizers of silver halide emulsions, in connection with which it seemed

All-Union State Scientific-Research Planning Institute of the Photographic-Chemical Industry, Moscow 125167. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1278-1283, September, 1988. Original article submitted September 11, 1986; revision submitted December 7, 1987.

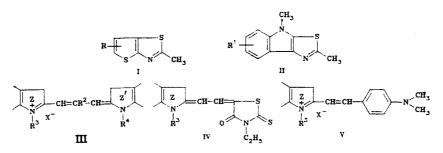

Com- pound	Z-thiazole	Z¹	$\lambda_{\text{max}}^{\text{abs}}$ (in (in C ₂ H ₅ OH), nm	Δλ,* nm (pK _a)
IIIa IIIb IIIc IIId IIIf IIIf IIIf IIIf IIIf IIIf	Benzo-† 6-Bromobenzo-† 5,6-Dimethylbenzo-† 4,5-Tetramethylenebenzo-† 6-Phenylbenzo-† Thieno[2,3-d]-† 4,5-Benzobenzo-† Indolo[3,2-d]-†,[3] 5-Bromothieno[2,3-d]-† 5,6-Dimethylthieno[2,3-d]-† 5-Methylindolo[3,2-d]-† 5-Methylindolo[3,2-d]-† 5,7-Dichloroindolo[3,2-d]-† 5,7-Dichloroindolo[3,2-d]-† 5,6-Tetramethylenethieno[2,3-d]- 5,6-Timethylthieno[2,3-d]- 5-Bromothieno[2,3-d]- 5,6-Timethylthieno[2,3-d]- 5-Bromoindolo[3,2-d]- 5-Bromothieno[2,3-d]- 5-Phenylthieno]2,3-d]- 5-Phenylthieno]2,3-d]- 5-Methylindolo[3,2-d]- 5-Bromoindolo[3,2-d]- 5-Bromoindolo[3,2-d]- 5-Bromoindolo[3,2-d]- 5,6-Dimethylthieno]2,3-d]- 5,6-Dimethylthieno]2,3-d]- 5,6-Dimethylthieno[2,3-d]- 5,6-Dimethy	Benzothiazole Benzothiazole Benzothiazole Benzothiazole Benzothiazole Benzothiazole Benzothiazole Benzothiazole Benzothiazole 2-Quinoline 2-Quinoline 2-Quinoline 3,3-Dimethylindolenine 3,3-Dimethylindolenine 3,3-Dimethylindolenine 3,3-Dimethylindolenine 3,3-Dimethylindolenine 3,3-Dimethylindolenine	$\begin{array}{c} 558\\ 560\\ 568\\ 574\\ 594\\ 597\\ 634\\ 607\\ 610\\ 612\\ 634\\ 640\\ 628\\ 632\\ 624\\ 573\\ 581\\ 579\\ 581\\ 579\\ 581\\ 594\\ 590\\ 592\\ 592\\ 592\\ 592\\ 592\\ 596\\ 580\\ 602\\ 608\\ 611\\ 542\\ 556\\ 565\\ 560\\ 562\\ 577\\ \end{array}$	$\begin{array}{c} (-0.62) \\ (-1.00) \\ (-0.42) \\ \hline \\ (-0.70) \\ (0.74) \\ (-0.04) \\ (0.05) \\ (0.83) \\ (1,17) \\ (0.30) \\ \hline \\ \\ - \\ \hline \\ \\ - \\ \\ - \\ \\ - \\ \\ 3.0 \\ 1.5 \\ 5.0 \\ 4.0 \\ 2.0 \\ 6.0 \\ 7.0 \\ 3.0 \\ - \\ 3.0 \\ 1.5 \\ $

TABLE 1. Absorption Maxima of Cyanines with Structure III (R = R¹ = C_2H_5 , R² = H)

*The deviations of the absorption maxima of the unsymmetrical dyes from the arithmetic means calculated with respect to the λ_{max} values of the corresponding symmetrical trimethinecyanines. $†Z = Z^1$.

expedient to investigate the effect of substituents that differ in character in the heteroresidues of thieno- and indolothiazolocyanines on their properties.

In this paper we describe the synthesis and discuss the spectral properties of dyes of different classes of derivatives of alkyl-, alkylene-, aryl-, and halothieno[2,3-d]thiazoles (I) and halo- and methylindolo[3,2-d]thiazoles (II). From the polymethine dyes with residues of bases (I and II) we obtained symmetrical and unsymmetrical carbocyanines III, dimethinemerocyanines IV, and p-dimethylaminostyryl dyes V, as well as a number of unsymmetrical meso-alkyl-substituted trimethinecyanines with a benzothiazole residue.

I R = CH₃, C₆H₅, Br, (CH₂)₄; II R¹ = CH₃, C1, or Br; Z is a thieno[2,3-d]or 8-methyl-indolo[3,2-d]thiazole residue, Z¹ is a thieno[2,3-d]- or 8methylindolo[3,2-d]thiazole, unsubstituted or substituted benzothiazole, 3,3-dimethylindolenine, or quinoline residue, R² is H or alkyl , R³ and R⁴ are alkyl groups, and X⁻ is an anion.

 λ_{\max}^{abs} (in Com- $\Delta\lambda$,* nm Z-thiazole pound $C_2 H_5 OH)$, ກົຫ In structure IV 524 549 550 26 19 Benzo-Thieno[2,3-d]-5-Bromothieno[2,3-d]-5,6-Dimethylthieno[2,3-d]-5,6-Tetramethylenethieno[2,3-d]-5-Phenylthieno[2,3-d]-Indolo[3,2-d]-5-Methylindolo[3,2-d]-2-Methylindolo[3,2-d]-Benzo-IVa 24,518 IVb 558 19 IVc 558 IVd 564 24 576 12 lVe IVf 580 11 7-Methylindolo[3,2-d]-5-Bromoindolo[3,2-d]-573 12 574 13 1Vg 5,7-Dichloroindolo[3,2-d]-IVh 568 15 In structure V Indolo[3,2-d]-5-Methylindolo[3,2-d]-7-Methylindolo[3,2-d]-5-Bromoindolo[3,2-d]-5,7-Dichloroindolo[3,2-d]-512 111,5 508 118,5 Va 506 114,5 vъ 512 110,5 Vc 98.5 Vd 520

TABLE 2. Absorption Maxima of Dimethinemerocyanines IV and Styryls V $% \left[{\left[{{{{\bf{N}}_{{\rm{B}}}}} \right]_{{\rm{A}}}} \right]$

*The deviations of the absorption maxima from the arithmetic means calculated with respect to the λ_{max} values of symmetrical trimethinecyanines and the monomethineoxanine (λ 542 nm) of the 3-ethylrhodanine derivative (for IV) or the hydrol of Michler's blue (λ 613 nm) (for V).

Symmetrical carbocyanines III ($Z = Z^1$, $R^2 = H$) were obtained by condensation of quaternary salts of base I with ethyl orthoformate in acetic anhydride or by the reaction of quaternary salts of II with their 2- β -acetanilidovinyl derivatives in acetic anhydride in the presence of triethylamine with heating (see [5]). Dimethinemerocyanines IV were synthesized from quaternary salts of 2-acetanilidovinyl derivatives of I and II and 3-ethylrhodanine (or 3-ethyl-5-acetanilidomethylenerhodanine and ethiodides of I and II) in ethanol by heating in the presence of triethylamine. For the preparation of styryl dyes V alkiodides of II were condensed with p-dimethylaminobenzaldehyde in ethanol in the presence of piperidine.

For the synthesis of unsymmetrical III $(Z \neq Z^1)$ the alkiodies of 2- β -acetanilidovinyl derivatives of I and II were condensed by heating with quaternary salts of 2-methylbenzo-thiazole, 3,3-dimethylindolenine, or quinoline in acetic anhydride, ethanol, or chloroform in the presence of triethylamine.

The incorporation of substituents into the 5 and 5' positions of thienothiazolocarbocyanine residues leads to an appreciably greater shift of the absorption maximum in the long-wave region of the spectrum than in the series of corresponding benzothiazole derivatives (see Table 1). The greatest bathochromic shift is characteristic for phenyl-substituted dyes. Halo-, alkyl-, and alkylenethienothiazolocarbocyanines absorb in virtually the same region of the spectrum.

The results of quantum-chemical calculations of the electronic structures of polymethine dyes that are derivatives of substituted thieno[2,3-d]thiazoles in the ground $({}^{1}S_{0})$ and excited $({}^{1}S_{1})$ singlet states (Table 3, carried out by the Pariser-Parr-Pople (PPP) method with the parameters proposed in [6] and used by us previously for calculations of thienothiazoles and polymethine dyes [7, 8] show that both electron-donor and electronacceptor substituents in the 5 and 5' positions of the heteroresidues of thienothiazolocarbocyanines lead to a more uniform distribution of the electron density in the chromophore than in the unsubstituted dye. Significant changes in the charges of the carbon atoms and small changes in the charges of the sulfur atoms of the annelated thiophene rings are observed in this case; this indicates transmission of the electronic effects of the substituents to the chromophore of the dye via the system of mobile π electrons of the thiophene rings. The greater effects of the substituents on the electronic structure of the

Charges on the Atoms (qr) and Bond Orders (Prs) in the Chromophore of the Dyes .. TABLE 3.

$R \xrightarrow{\delta}_{3} \xrightarrow{S^{1}}_{3} S^{$

-

	P _{Ts}	7-8	0,630 0,599 0,690 0,600 0,622 0,622 0,622 0,622
		2-7	0,645 0,645 0,646 0,646 0,644 0,644 0,644 0,630
		23	0,574 0,574 0,475 0,476 0,566 0,566 0,568 0,568 0,568
	dr on the atoms	6′	- 0,041 - 0,015 - 0,035 - 0,035 - 0,036 - 0,036 - 0,050 - 0,050
		3,	- 0,073 - 0,009 - 0,082 - 0,082 - 0,084 - 0,084 - 0,031 - 0,005
			0,140 0,134 0,134 0,134 0,130 0,130 0,130 0,130 0,150 0,150
1		1	$\begin{array}{c} -0.122\\ -0.121\\ 0.018\\ -0.121\\ -0.122\\ -0.122\\ -0.111\\ -0.111\\ 0.050\end{array}$
		9	$\begin{array}{c} -0.022\\ -0.006\\ -0.036\\ -0.037\\ -0.037\\ -0.024\\ 0.056\\ 0.055\end{array}$
2	4	2	0,018 0,059 0,021 0,022 0,022 0,022 - 0,092
~		4	0,087 0,084 0,082 0,082 0,083 0,083 0,083 0,078
-2 ¹¹ 5		3	0,393 0,395 0,395 0,397 0,394 0,394 0,394 0,406 0,406
		2	0,102 -0,095 -0,096 0,097 0,097 0,097 0,109 0,109
		-	0,089 0,101 0,101 0,087 0,087 0,088 0,088 0,088
	State		ઌૢઌૼઌૢઌૻઌૢઌૢઌૢ ઌૢ
	-	¥	H H C6Hs C6Hs C6Hs C6Ht P ⁻ CH3OC6Ht NO2 NO2

	Yield,		
. Characteristics of the Dyes	Calculated, %	N (S)	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & &$
		H (I)	(225,33) (22
		C (Br)	$\begin{array}{c} 45.0 \\ 47.6 \\ 17.6 \\ 17.6 \\ 17.8 \\ 50.2 \\ 53.1 \\ 53.1 \\ 53.1 \\ 53.1 \\ 53.1 \\ 53.1 \\ 18.4 \\ 53.1 \\ 18.4 \\ 53.1 \\ 18.4 \\ 53.1 \\ 18.4 \\ 18.5 \\ 18.5 \\ 18$
	Emnirical formula		C ₁ ,H ₁₈ Br ₂ IN ₂ S, C ₂₈ H ₃₉ IN ₂ S, H ₂ O C ₂₉ H ₃₁ IN ₄ S ² C ₂₉ H ₃₁ IN ₄ S ² C ₂₇ H ₃₆ Br ₁ IN ₅ S ³ C ₂₁ H ₃₆ IN ₂ S ₃ , C ₂ H ₅ OH C ₂₁ H ₃₆ IN ₂ S ₃ , C ₂ H ₅ OH C ₂₁ H ₂₆ IN ₅ S ₅ C ₂₁ H ₂₇ IN ₅ S ₅ C ₂₂ H ₂₇ IN ₅ S ⁵ C ₂₂ H ₂₂
	Found, %	N (S)	$\begin{array}{c} \begin{array}{c} 2, 2, 8\\ (20,0)\\ (10,0)\\ ($
		(I) H	22,2) (22,2)
		C (Br)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	mp,* °C		$\begin{array}{c} 234\\ 234\\ 235\\ 255\\ 255\\ 255\\ 255\\ 255\\ 255\\ 255$
TABLE 4.	Com- pound		VCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

*Compounds IIIa, j-1, o-q, u-y and IVb, e-g were dark-violet prisms, IIIc, e-g, r, s were dark-blue prisms, IVa, c were brown prisms, and V -d were dark-red plates. †The percentage of chlorine.

1063

chromophore in cyanines with thieno[2,3-d]thiazole residues as compared with benzothiazole derivatives and, correspondingly, on their absorption spectra can probably also be explained in the same way. The most uniform distribution of the electron density in the chromophore is characteristic for 5,5'-di(p-methoxyphenyl)- and 5,5'-diphenylthienothiazolocarbocyanines.

The introduction of methyl groups into indolothiazole residues leads to a small shift of the absorption maximum of symmetrical carbocyanines to the short- and long-wave regions of the spectrum; the 5,5'- and 7,7'-dimethylindolo[3,2-d]thiazolocarbocyanines differ in color. However, the incorporation of halogen atoms into the 5 and 5,7 positions of the indolothiazole heteroresidue gives rise only to a hypsochromic shift of the absorption maximum of the symmetrical dyes (by 2-10 nm). The 5-halo- and 5,7-dihalo derivatives also differ appreciably in color. With respect to their basicities the thienothiazolo- and indolothiazolotrimethinecyanines (Table 1, see the pK_a values) significantly surpass the benzo- and naphthothiazole derivatives, respectively. It follows from Tables 1 and 2 (see the $\lambda\lambda$ values of unsymmetrical carbocyanines, dimethinemerocyanines, and styryl dyes) that the presence of electron-donor groups in thieno- and indolothiazolocyanine heteroresidues increases their basicities somewhat, whereas the presence of halogen atoms produces the opposite effect.

EXPERIMENTAL

The amounts of solvents in the dyes were determined by means of GLC. The characteristics of the dyes are presented in Table 4.

Symmetrical Unsubstituted (in the polymethine chain) Carbocyanines III. A mixture of 1 mmole of the ethiodide of 5-bromo- or 5,6-tetramethylene-2-methylthieno[2,3-d]thiazole, 0.375 g (2.5 mmole) of ethyl orthoformate, and 3.5 ml of acetic anhydride was heated for 30 min at 140°C, after which it was cooled and diluted with ether. The precipitate was removed by filtration, washed with water, air dried, and recrystallized from ethanol. This method gave III_a and IIIc. A mixture of 1 mmole of 2,5,8-trimethylindolo[3,2-d]thiazole ethiodide, 1 mmole of 2- β -acetanilidovinyl-5,8-dimethylindolo[3,2-d]thiazole, 15 ml of anhydrous ethanol, and 1 mmole of triethylamine was refluxed for 2 h, after which it was cooled, and the precipitate was removed by filtration, washed with ether, and purified as in the case of III_a to give IIIe. Compounds IIIf and IIIg were similarly synthesized by condensation of the ethiodides of 2,7,8-trimethyl- and 2,8-dimethyl-5-bromoindolo[3,2-d]thiazole with their 2- β -acetanilidovinyl derivatives in 20 ml of acetic anhydride for 10 min at 60°C.

Unsymmetrical Unsubstituted (in the polymethine chain) Carbocyanines III. A mixture of 1 mmole of 2-methylbenzothiazole ethiodide, 1 mmole of 2-β-anilidovinyl-5-bromothieno[2,-3-d]thiazole ethiodide, 15 ml of acetic anhydride, and 1 mmole of triethylamine was maintained at room temperature for 12 h, after which the precipitate was removed by filtration, washed successively with water, aqueous ethanol, and ether, and purified as in the case of III a. Compounds IIIk and IIII were similarly synthesized from 5,6-dimethyl- and 5,6tetramethylene-2- β -acetanilidovinylthieno[2,3-d]thiazole ethiodides in the course of 5 min in 250 ml of chloroform at 20°C, and IIIo, IIIp, and IIIq were obtained from 5,8-dimethyl-, 5-bromo-8-methyl-, and 7,8-dimethyl-2- β -acetanilidovinylindolo[3,2-d]thiazole ethiodides, respectively, in 25 ml of anhydrous ethanol (30 min, 20°C), 25 ml of acetic anhydride, 25 ml of acetic anhydride (10 min, 50°C), and 20 ml of anhydrous ethanol (30-40 min, 20-25°C). Compounds IIIr (30 ml of ethanol, refluxing for 5 min) and IIIs (200 ml of chloroform, with 30 min cooling and subsequent dilution of the reaction mixture with 200ml of ether) were obtained from quinaldine ethiodide by a method similar to that used to prepare carbocyanines IIIj. Carbocyanines IIIu, IIIx, and IIIy were synthesized by condensation of 2,3,3-trimethylindolenine ethiodide with the ethiodides of $2-\beta$ -acetanilidovinyl derivatives of 5-bromo-, 5,6dimethyl-, and 5,6-tetramethylenethieno[2,3-d]thiazole in 20 ml of acetic anhydride for 10 min at 120°C.

<u>Dimethinemerocyanines IV.</u> A mixture of 1 mmole of $2-\beta$ -acetanilidovinyl-5-bromothieno-[2,3-d]thiazole ethiodide, 1 mmole of 3-ethylrhodanine, 10 ml of ethanol, and 1 mmole of triethylamine was refluxed for 15 min, after which it was cooled, and the precipitate was removed by filtration, washed with water and ethanol, dried and recrystallized to give IV a. Compounds IVb,d-h were similarly synthesized. Dye IVc was obtained by condensation of 1.4 mmole of 2-methyl-5,6-tetramethylenethieno[2,3-d]thiazole ethiodide with 1.4 mmole of 3-ethyl-5-acetanilidomethylenerhodanine in 10 ml of ethanol in the presence of 0.35 ml of triethylamine by refluxing for 30 min.

<u>Styryl Dyes Va-d.</u> A 1-mmole sample of the quaternary salt of indolothiazole II was refluxed with 1 mmole of p-dimethylaminobenzaldehyde in 4 ml of ethanol in the presence of a drop of piperidine.

LITERATURE CITED

- 1. V. G. Zhiryakov and P. I. Abramenko, Khim. Geterotsikl. Soedin., No. 3, 488 (1969).
- 2. V. G. Zhiryakov, N. I. Astrakhantseva, P. I. Abramenko, and I. I. Levkoev, Dokl. Akad. Nauk SSSR, 219, 870 (1974).
- 3. P. I. Abramenko and T. K. Ponomareva, Khim. Geterotsikl. Soedin., No. 12, 1606 (1972).
- 4. P. I. Abramenko and T. K. Ponomareva, Zh. Vses. Khim. Obshchestva, 28, 114 (1983).
- 5. F. M. Hamer, The Cyanine Dyes and Related Compounds, Interscience, New York-London (1964).
- V. A. Kosobutskii, G. I. Kagan, V. K. Belyakov, and O. G. Tarakanov, Zh. Strukt. Khim., <u>12</u>, 822 (1971).
- 7. P. I. Abramenko and V. A. Kosobutskii, Khim. Geterotsikl. Soedin., No. 5, 626 (1978).
- 8. P. I. Abramenko and V. A. Kosobutskii, Khim. Geterotsikl. Soedin., No. 9, 1202 (1979).